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The ‘noble’ gases have been known to have anaesthetic properties 
for 50 years yet only recently has their application become a clinical 
reality. In this review we describe the preclinical and clinical studies 
that have led to a resurgence of interest in the use of the element 
xenon as an anaesthetic. Furthermore, we highlight specific areas 
where xenon demonstrates advantages over other anaesthetics, 
including safety, beneficial pharmacokinetics, cardiovascular 
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stability, analgesia and neuroprotection. 

 

  
The ‘noble’ gas xenon possesses numerous salubrious qualities 
which are currently underutilized in the world of clinical medicine; 
most notably in the field of anaesthesia. Xenon exists naturally as 
nine isotopes, of which 132Xe, with a mean atomic weight of 
131.293, is the most abundant. However, the gas is extremely rare, 
representing no more than 8.75x10–6% of atmospheric gases, and 
hence derives its name from the Greek for ‘stranger’. Discovered in 
1898 by Travers and Ramsay, xenon is now manufactured by fractional distillation of air and is used 
commercially for lasers, high-intensity lamps, flash bulbs, fuel for ion thrusters in the aerospace 
industry, X-ray tubes and in medicine. Xenon has been used in clinical radiological1 and anaesthetic 
practice2 for 50 years, and in this article we discuss its potential application in clinical anaesthetic 
practice, highlighting areas in which its unique properties can be exploited.  

 

  
Currently anaesthetics are thought to produce anaesthesia via 

interaction with receptor targets, most commonly GABAA receptors 

and possibly other receptors such as the N-methyl-D-aspartate 

(NMDA) subtype of the glutamate receptor3 which potentiate 
inhibitory neurotransmission and inhibit excitatory 
neurotransmission, respectively. Xenon is thought to exert 
anaesthetic action by potent non-competitive inhibition of NMDA 
receptors,4,5 with little effect on GABAA receptors or non-NMDA glutamatergic receptors.4–6 Franks 

and colleagues4,5 demonstrated that 80% xenon reduced NMDA-activated currents by approximately 
60% (Fig. 1), grouping xenon with nitrous oxide,7 cyclopropane8 and ketamine9 in a class of 
anaesthetics with effects on NMDA receptors but not on GABAA receptors.  
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Fig. 1 Xenon inhibits NMDA receptors in cultured rat 
hippocampal neurons. NMDA activates an inward current (in 
neurons clamped at –60 mV) with an EC50 concentration of 
24 ± 2 µM NMDA and a Hill coefficient of 1.2 ± 0.1. Xenon 
(80%) inhibited the current by approximately 60%, but did 
not significantly change either the EC50 or the Hill 
coefficient. Each data point represents the mean peak current 
from at least six cells. The inset shows typical current traces 
(at 100 µM NMDA) in the presence and absence of xenon. 
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Recent studies have implicated neuronal background potassium channels (two-pore-domain potassium 
channels such as TREK and TASK), which modulate neuronal excitability, as potential targets of 
anaesthetic action,10–12 and xenon, nitrous oxide and cyclopropane have been shown to activate TREK-
1 but not TASK-3 channels.13 Xenon (80%) activated TREK-1 channels by 35 ± 2% (Fig. 2) but had 
little effect on TASK-3 channels, unlike the known GABAergic anaesthetic halothane which activates 
both.13 Activation of TREK channels leads to neuronal hyperpolarization which reduces cellular 
excitability; in addition, this effect is likely enhance NMDA receptor blockade due to the voltage-gated 

kinetics of this channel. As TREK channel activation is a consistent effect of the anaesthetics tested so 
far10–13 it may become a common mechanism of action for all anaesthetics.  

 

  

It is still not known how anaesthetics produce anaesthesia, but significant progress has been made in this 
field over the last two decades. Study of how an ‘inert’ element such as xenon can produce anaesthesia 
will be an important probe in furthering inquiry into anaesthetic mechanisms. Currently, antagonism of 
the NMDA receptor is thought to be xenon’s prime site for anaesthetic action and recent work has also 
highlighted the role of TREK-1 channels; although their relative contributions are hard to estimate, both 
sites of action are likely to be involved. It is possible that further targets contributing to the anaesthetic 
state produced by xenon will be isolated in the future.  

 

  
Recently, a large multicentre randomized control trial was conducted 

across Europe to assess the efficacy and safety profile of xenon 

View larger version (17K): 
[in this window] 

[in a new window] 
  

Reproduced with permission from Franks et al., Nature, 396, 
324, 1998. 
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Fig. 2 Xenon concentration–response curve for the activation 
of TREK-1 channels expressed in HEK 293 cells. Data are 
mean ± SEM (n = 7–14 cells). Reproduced with permission 
from Gruss et al., Mol. Pharmacol., 65, 443–52, 2004. 
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anaesthesia.14 This study of 224 patients (ASA I–III; 218 patients 
completed the protocol) demonstrated that xenon (60 ± 5%) was not 
only safe but also had a faster post-anaesthesia recovery time than 
isoflurane (end-tidal concentration 0.5%) combined with nitrous 
oxide (60%). As we will discuss below, xenon was found to be 
cardiovascularly stable (‘cardiostability’), with a tendency to an increased analgesic effect. Furthermore, 

xenon’s cardiovascular, analgesic and safety profile has been evaluated with success in the field of 
critical care medicine.15 Clinical application in the field of cardioprotection and neuroprotection will 
also be discussed.  

Anaesthetic potency and depth  

Cullen et al.16 originally estimated a minimum alveolar concentration (MAC) value for xenon of 71% of 
an atmosphere (71% atm); more recently, Nakata et al.17 have estimated it to be somewhat lower, at 
63% atm (in a middle-aged population). The same group also noted a gender-dependent difference in 
MAC values in the elderly ( 65 years), with females having a significantly lower MAC than men (51% 
atm vs. 69% atm)18 (Fig. 3). This is especially interesting as volatile anaesthetic agents only show 
gender-dependent differences in MAC during pregnancy,19 and the observations of Goto et al.18 may 
represent a class effect for all NMDA antagonists.  

 

  

The MAC-awake value for xenon was determined in 90 female patients to be 33% atm or 0.46 times its 
MAC.20 Therefore xenon is ranked between nitrous oxide (MAC-awake of 0.61 MAC), and isoflurane 

and sevoflurane (MAC-awake of 0.35 MAC for both). Furthermore, xenon interacts additively with 
isoflurane and sevoflurane on MAC-awake, unlike nitrous oxide which is infra-additive with either 
agent.  

While there is no effective method for measuring anaesthetic depth, two methods currently being 
evaluated are mid-latency auditory evoked potentials (MLAEPs), which predict responsiveness to verbal 
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Fig. 3 The probability of no patient movement in response to 
skin incision is plotted against the concentration of xenon for 
patients aged 65 years. The continuous and broken curves 
represent the logistic regression curves for men and women, 
respectively. By definition, the concentration associated with 
a 50% probability of no movement (the intersection between 
the horizontal bar and the regression curve) is the MAC for 
xenon for each sex. The horizontal bars represent the 95% 
confidence intervals of the MACs. Reproduced with 
permission from Goto et al., Anesthesiology, 97, 1129–32, 
2002. 
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command,21,22 and bispectral index (BIS) monitoring, which is an electroencephalographic-derived 
univariate scale thought to reflect the level of hypnosis in anaesthetized patients.23 Goto et al.24 found 
that, unlike isoflurane, BIS monitoring did not correlate with hypnotic depth on emergence from xenon 

anaesthesia. Later, they found that MLAEPs correlated more closely with depth of hypnosis and 
concluded that this was a more appropriate form of monitoring xenon anaesthesia.25 Recently, work 
from Russia has suggested that BIS is particularly inaccurate on induction and emergence from 
anaesthesia with xenon but may provide adequate assurance of established anaesthetic depth.26 Two 
conclusions can be drawn from these investigations: MLAEPs correlate more closely with the xenon 
hypnotic state than BIS monitoring, and there is insufficient information available to assure us that either 
method is completely effective for assessing depth of anaesthesia.  

Induction and emergence  

Xenon possesses a favourable pharmacokinetic profile with fast induction and emergence14,27–29 which 
is independent of the duration of anaesthesia.15,28 This effect is attributable to its low blood–gas 
partition coefficient of 0.115,30 which is significantly lower than those for other inhalational anaesthetics 
(nitrous oxide, 0.47; sevoflurane, 0.65; desflurane, 0.42). Xenon has been shown to induce anaesthesia 
faster than sevoflurane (71 ± 21 s vs. 147 ± 59 s),27 though xenon induction may be associated with 
agitation, particularly in men.18 The Xenon Study Group14 demonstrated the rapid emergence from 
xenon anaesthesia, showing that xenon exhibited significantly faster recovery than equi-MAC nitrous 
oxide–isoflurane. Emergence from xenon anaesthesia proved to be two or three times faster than 
emergence from equi-MAC concentrations of nitrous oxide–isoflurane or nitrous oxide–sevoflurane 
anaesthesia.28 Xenon also demonstrated significantly quicker recovery time than an equivalent depth of 
propofol anaesthesia after coronary artery bypass grafting in 10 male patients in a randomized cross-
over study (mean values 3 min 11 s vs. 25 min 23 s).29  

Rapid emergence times following anaesthesia may be advantageous in a broad spectrum of applications 
including ‘day-surgery’ out-patient settings, critical care medicine (to afford clinical examination15) and 
cardiac surgery, where both ‘fast tracking’30 and cardiovascular stability are desirable features.  

Cardiovascular system  

Xenon is regarded as a cardiostable anaesthetic; inotropic preservation and only a clinically insignificant 
decrease in heart rate are consistently reported.14,29,31–34 This effect may be due to less stress-induced 
sympathetic stimulation,32 a theory supported by the observation of stable epinephrine levels during 
xenon anaesthesia.33 Perioperative plasma cortisol and epinephrine did not rise in the xenon group 
unlike the rise observed in the nitrous oxide group, despite the fact that more fentanyl was used during 
nitrous oxide anaesthesia.33 However, Bedi et al.15 recently showed that there was no difference in 
plasma catecholamine levels compared with propofol to account for xenon’s cardiostability. Xenon is 
also considered to suppress both sympathetic and parasympathetic transmission,35 and therefore xenon’s
cardiostability is likely be a consequence of a combination of autonomic direct myocardial and indirect 
catecholaminergic actions.  
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Assessment of xenon’s effects on compromised myocardium may be more relevant when determining 
whether xenon will be efficacious in the clinical arena. Dingley et al.29 have directly compared the 
cardiovascular effects of post-cardiac surgical patients sedated with either propofol or xenon, noting that 

xenon caused no change in heart rate or mean arterial pressure, and that higher filling pressures and 
systemic vascular resistance were seen than were evident in propofol-sedated patients. Indeed, 

ventricular function, as assessed by trans-oesophageal echocardiography, is unchanged during xenon 
anaesthesia.34 In a study of 20 patients scheduled for elective coronary artery bypass grafting, xenon 

decreased indices of cardiac function significantly less than nitrous oxide.36 In a critical care setting, 
xenon maintained blood pressure better than propofol throughout an 8 h period, and the authors 
concluded that xenon’s cardiostable properties may have a niche application in states of sepsis or shock 
where other sedative agents may induce myocardial depression.15 Animal models of cardiac dysfunction 
(left ventricular compromise37 and cardiomyopathy38) have also been used to demonstrate xenon’s 

cardiostablity. Furthermore, inhaled xenon (70%) was shown to be cardioprotective during early 
reperfusion following coronary artery occlusion, reducing infarct size after regional ischaemia in rabbit 
heart in vivo.39 This would not only be of great advantage to patients who experience ischaemic events 
under anaesthesia, but is also of great potential for the application of xenon following myocardial 
infarction.  

Xenon’s cardiostable effect has been investigated in vitro where it was found to exert little effect on 
major cation currents, including those for sodium (INa), calcium (ICa,L) and potassium (IK,ir), in guinea 

pig myocytes.40 Xenon exerts no effects on L-type calcium channels in human atrial myocytes, even in 
the presence of the ß-adrenergic agonist isoproterenol, unlike the known myocardial depressant 
halothane.41 In contrast with volatile anaesthetics,42 xenon showed no deleterious effects on cardiac 
function in preparations of isolated guinea pig ventricular muscle bundles.40 Thus xenon appears to be 
relatively ‘inert’ in in vitro models of cardiac function.  

Clinical application of xenon is likely to succeed in arenas where cardiovascular compromise can be 
predicted, such as high-risk, cardiac and emergency surgery, and potentially also in situations of shock 
and sepsis. In addition, patients with cardiac disease may benefit from the cardioprotective nature of 
xenon anaesthesia.  

Neuroprotection  

Xenon’s capability to act as a neuroprotective agent has also been investigated. As NMDA receptors 
appear to be crucial to the initiation of neuronal injury and progression to cell death as a result of a 
variety of insults,43–45 xenon has been evaluated in various paradigms of neuronal injury. In vitro xenon 
reduced mouse cortical co-culture neuronal injury, quantified by the amount of lactate dehydrogenase 
(LDH) released into the culture medium, induced by NMDA, glutamate or oxygen–glucose deprivation 
(OGD). LDH release was significantly reduced at all concentrations of xenon tested (Fig. 4) with xenon 
IC50

 concentrations for neuroprotection being 19 ± 6% atm and 28 ± 8% atm for NMDA- and 

glutamate-induced injury, respectively. Xenon was also effective in protecting against the injury caused 
by depriving the cell cultures of oxygen and glucose for 90 min with an IC50 concentration of 10 ± 4% 
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atm.46 Further in vitro work on rat cortical cultures showed that xenon (50%) could attenuate hypoxia-
induced LDH release,47 accompanied by a 60% reduction in glutamate release; this effect could be 
partially antagonized by intracellular calcium chelation. Recent observations have suggested that some 
calcium signalling in the neuropathological situation is protective,45,48 dissociating calcium load and 
neuronal death;44 in the case of xenon, preliminary evidence suggests that preservation of some calcium 
signalling is necessary for neuroprotection. In clinical practice xenon is likely to be administered in 
combination with other anaesthetic agents, and therefore we investigated whether co-administration of 
isoflurane, a GABAA agonist,5 which is also neuroprotective,49 would enhance xenon neuroprotection. 

The combination proved to be synergistic50 (Fig. 5), with the IC50 (mean ± SEM) for xenon 

neuroprotection significantly decreasing from the predicted value of 28 ± 2.0% atm (assuming 
additivity) to 18.9 ± 2.5% atm in the presence of 0.6% isoflurane.  

 

  
 

 
View larger version 

(12K): 
[in this window] 

[in a new window] 
  

Fig. 4 Dose-dependent effect of xenon vs. injury produced by (A) NMDA 
or (B) glutamate in vitro. Co-cultures of mouse neuronal–glial cells were 
treated with (A) NMDA 250 mM or (B) glutamate 100 mM for 10 min 
during exposure to oxygen–carbon dioxide–xenon–nitrogen. The xenon 
and nitrogen concentrations were changed reciprocally such that their 
aggregate was 75% atm. After 6 h the culture medium was harvested and 
assayed for LDH. Data are expressed as the percentage mean ± SEM (n = 
3) of LDH released into the medium over the 6 h period normalized to 
LDH release when no xenon is present. Reproduced with permission from 
Wilhelm et al., Anesthesiology, 96, 1485–91, 2002. 

 
View larger 

version (14K): 
[in this window] 

Fig. 5 Xenon and isoflurane alone and in combination inhibited LDH 
release, expressed as a fraction of maximum LDH release in the absence of 
agents (mean ± SEM, n = 3 or 4) induced by oxygen–glucose deprivation for 
75 min. (A) Closed circles, xenon alone, IC50 = 35.9 ± 2.2% atm; open 
circles, xenon in the presence of 0.6% isoflurane, IC50 = 18.9 ± 2.5% atm. 
(B) Closed circles, isoflurane alone, IC50 = 2.72 ± 0.35%; open circles, 
isoflurane in the presence of 14% xenon, IC50 0.92 ± 0.13% atm. 
Reproduced with permission from Ma et al., Anesthesiology, 99, 748–51, 
2003. 
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In vivo xenon attenuated neuronal injury induced by administration of N-methyl-L-aspartate (NMA) to 
rats (Fig. 6).46 Furthermore, we demonstrated the neuroprotective effect of xenon in a focal ischaemia 
model by administering 70% xenon during transient middle cerebral artery occlusion in mice and found 
a significant reduction in total, cortical and subcortical infarct size compared with nitrous oxide.51 This 
difference in efficacy may be attributable to a differing potency of antagonism of the NMDA receptor 
(and its subtypes).  

 

  

In order to provide functional correlates (i.e. a cognitive parallel) of this histological effect46 we studied 
the effect of xenon in a model of neurological injury induced by cardiopulmonary bypass (CPB).52 In 
this model, neuromotor skills, visuospatial memory and spatial memory were assessed for up to 12 days 
after rats were subjected to CPB in the presence of either xenon or nitrogen (65% atm). Xenon 
attenuated the neurocognitive dysfunction caused by CPB; this effect was superior to that seen with 
MK801 (dizolcipine), another NMDA antagonist (Fig. 7).52 Furthermore, in our focal ischaemia model 
in mice, xenon provided superior neurocognitive protection to that provided by nitrous oxide, as 
evidenced in two out of three cognitive tests conducted 24 h after ischaemia.51  

 

[in a new window] 
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Fig. 6 Dose-dependent neuroprotective effect of xenon in vivo
on NMA-induced neuronal injury. Rats were injected with 
NMA 100 mg/kg subcutaneously and humanely killed 4 h 
later after exposure to air (n = 7) or xenon (n = 5–8). The 
arcuate nucleus was sectioned and stained with cresyl violet 
and the number of degenerated neurons (pyknotic nuclei 
surrounded by vacuolated cytoplasm) were counted (mean ± 
SD). *P < 0.05, **P < 0.01 compared with control. 
Reproduced with permission from Wilhelm et al., 
Anesthesiology, 96, 1485–91, 2002. 

 
View larger version (12K): 

Fig. 7 Spatial memory following CPB. After CPB animals 
were subjected to 10 consecutive days of Morris water maze 
testing where they had to locate a submerged platform in one 
of four quadrants of a pool of water. Twelve days after CPB, 
animals were subjected to a probe trial, in which there was no 
platform present, for 60 s. The percentage of time spent in the 
quadrant of the former platform position was obtained as a 
measure of spatial bias. Animals in the Sham and CPB+Xe 
groups spent a longer period in the quadrant of the former 
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Spontaneous neuronal injury, such as occurs with stroke and perinatal brain injury, cannot necessarily be 
approached in a prospective manner, i.e. application of the agent before the injury. Therefore 
investigation of whether an agent is effective with post-injury administration is important for clinical 
application in these scenarios. In a model of transient global ischaemia (temporary middle cerebral artery 
occlusion in adult rats for 90 min), application of 50% xenon for 3 h, starting 15 min after the insult, 
significantly reduced neuronal damage in the cortex and striatum; interestingly, 70% xenon was 
ineffective.53 As a large degree of neuronal damage post-insult occurs in the penumbral region of 
infarct, xenon appears to preserve this region. Theoretically, retrospective treatment with xenon could be 
applied to neurological conditions such as stroke; however, it will be prudent to establish a ‘window’ of 
effective retrospective treatment in animals before extrapolating this treatment to human trials.  

The MAC of xenon is estimated to be 63–71% atm;16,17 therefore the concentrations required for 
neuroprotection are significantly sub-anaesthetic. Thus, in contrast with other anaesthetics that require 
anaesthetic or supra-anaesthetic doses to act as a neuroprotectant,49,54,55 xenon maybe effective at more 
clinically acceptable concentrations or where anaesthesia is not required or may even be detrimental 

(e.g. in patients with cardiovascular compromise). It should be noted that other NMDA receptor 
antagonists have faired poorly in clinical trials so far despite showing promise in preclinical 

experiments. In some instances, this is because of unfavourable pharmacological properties which 
prevent rapid transfer of the NMDA antagonist across the blood–brain barrier. Almost all NMDA 
antagonists tested so far exhibit psychomimetic behavioural changes;56,57 pyramidal neuronal damage in 
the posterior cingulate and retrosplenial (PC/RS) cortices7,58,59 are considered to be morphological 
correlates of the behavioural changes. We showed that ketamine and nitrous oxide increased c-Fos 
expression in PC/RS cortices dose dependently, a neurotoxic feature not caused by xenon (Fig. 8).60 In 
addition, xenon,61 like haloperidol60 and eliprodil,62 can ameliorate the neurotoxic effects of other 

NMDA antagonists.  

 

[in this window] 
[in a new window] 

  

platform, which indicates that they have a better spatial 
memory function than the other groups. The results are mean 
± SD (n = 10). *P < 0.05, **P < 0.01 compared with the CPB 
group. P < 0.05 compared with the CPB + Xe group. 
Reproduced with permission from Ma et al., Anesthesiology, 
98, 690–8, 2003. 

 
View larger version (26K): 

Fig. 8 Concentration or dose–response effects of xenon, 
nitrous oxide and ketamine on the number of c-Fos positive 
neurons in the posterior cingulate and retrosplenial cortices. 
Rats were exposed to increasing doses or concentrations of 
three anaesthetics which antagonize the NMDA receptor. The 
rats were killed and the brains harvested and prepared for c-
Fos immunostaining. MK 801 is included as a known positive 
control for the production of a c-Fos immunohistochemical 
lesion in the posterior cingulate and retrosplenial cortices. 
Results are shown as mean ± SEM. *P < 0.05, **P < 0.01 vs. 
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Recent in vitro research has suggested that xenon acts not only on NMDA channels but also on TREK-1 
channels (discussed above). TREK-1 channels are also activated by the neuroprotective agents 

riluzole,63 a therapeutic agent used to treat amyotrophic lateral sclerosis, and polyunsaturated fatty 
acids.64 Consequently, it has been postulated that these channels contribute to neuroprotection. As 
TREK-1 channels are activated by intracellular acidosis and reduce neuronal excitability, this is 
certainly feasible.  

Xenon is not ‘inert’ with respect to cerebral haemodynamics; increased cerebral blood flow (CBF)65–67 
with preserved cerebral autoregulation66–68 is thought to occur acutely with xenon administration. This 
is an area of crucial importance to the clinical application of xenon, as any neuroprotective or anaesthetic 
agent that may be used in a situation where raised intracranial pressure (ICP) is likely (e.g. 
neurosurgery) must have a predictable and safe effect on CBF. Indeed, a theoretical concern that 
increasing CBF may worsen ICP is an important consideration with an agent of this class. There have 
been no reports of an increase in ICP with xenon administration in animal models, despite reported 
vasodilatation.69 In humans, xenon has been used without compromise in radiology; in one study of 
head trauma sufferers, xenon appeared to increase intracranial and cerebral perfusion pressure but 
without any evidence of cerebral oligaemia or ischaemia.70 Further information is required to define 
whether xenon may be used safely in situations of raised ICP.  

Analgesia  

Consistent with its ability to inhibit the NMDA receptor, xenon provides analgesic effects. In clinical 
studies xenon consistently provides a significantly greater analgesic effect than nitrous oxide.32–34,71,72 
However, Rossaint et al.14 found only a tendency to increased analgesic effect compared with 1 MAC 

isoflurane–nitrous oxide, although this effect may have been underestimated as xenon was only 
administered at 0.9 MAC. Indeed, recent work in critical care, where a long duration of sedation is 
required, has suggested that xenon possesses very potent analgesic action, with only one of 21 patients 
requiring any more than minimal alfentanil during an 8 h period.15 Many comparisons have been made 
between xenon and nitrous oxide; however, not only do they have different potencies, but they also 
exhibit different analgesic profiles. Nitrous oxide’s mechanism of antinociception has been clarified 
recently,73 showing a dependence on opiate and adrenergic signalling that xenon does not share.74 In 
addition, xenon is active at the level of spinal cord, whereas nitrous oxide is not,75 which may indicate 
differing potencies in the inhibition of the NMDA receptors in the dorsal horn of the spinal cord. 
Opposing effects have been further demonstrated, as nitrous oxide does not exert any antinociceptive 
effect in the formalin test in the neonatal rat76 whereas xenon does.77 Extrapolation of these results to 

humans suggests not only that xenon may provide analgesia in the paediatric population but also that the 
use of nitrous oxide for analgesia may be imprudent. We await clinical studies to address these issues. 
Xenon may be of particular utility in neonatal anaesthesia as the neonatal myocardium is very sensitive 

[in this window] 
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control. Reproduced with permission from Ma et al., Br. J. 
Anaesth., 89, 739–46, 2002. 
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to the depressant effects of volatile anaesthetics;78 whether xenon exerts a salubrious cardiostable effect 
in the neonate is currently not known.  

Organ effects  

Xenon appears to exert no deleterious effects on other organ systems. Prolonged xenon exposure in the 
critical care setting was not associated with any further deterioration in haematological and biochemical 
variables.15 These data are consistent with previous reports suggesting that xenon exerts no effects on 

coagulation79 or platelet function in vitro80 or on the immune system.81 Xenon does not impair hepatic 
or renal function15,82 and has been used safely in hepatic surgery.83 Indeed, as xenon is excreted in the 
lungs with no modification by the renal or hepatic systems, it may prove to be the anaesthetic of choice 

in surgery or critical care when these systems are impaired.  

Concerns over increased airway pressure during xenon ventilation led to hypotheses centred upon an 
increased airway resistance induced by this gas.84,85 However, recent work has suggested that the 
increase is attributable to the physical properties of the gas and that bronchoconstriction is not a 
contributing factor.86 Calzia et al.87 have evaluated the effect of xenon on diffusion hypoxia and 
concluded that this phenomenon is unlikely to occur with the administration of xenon.  

Xenon does not does not trigger malignant hyperthermia in susceptible swine.88,89 Burov et al.90 found 
no evidence of toxicity in several in vitro and in vivo paradigms involving two species given xenon 
either acutely (Balb/c mice and Wistar rats) or subchronically (Wistar rats and mongrel dogs).90 Studies 
of microorganisms and mice showed that xenon has no mutagenic or carcinogenic properties.91 No 
embryotoxic or teratogenic changes were found in pregnant Wistar rats, nor was xenon found to be 

allergenic.90  

 

  
A major limiting factor in the development of routine xenon 

anaesthesia is the expense of recovering the gas from the 
atmosphere; the current cost of 1 litre of xenon with a purity of 
99.99% is approximately $10. Therefore closed-circuit delivery 
appears to be an economic necessity for the application of xenon 
anaesthesia.91 The Xenon Study Group recently used a total of 24.6 
± 10.2 litres of xenon for 211 ± 102 min of closed-circuit 

anaesthesia;14 we estimate the costs of this to be approximately $70 
per hour. A cost analysis for a 40-year-old ASA I adult male weighing 70 kg undergoing simulated 
elective surgery found that 240 min of closed-circuit xenon anaesthesia would cost $356 (approximately 
$90 per hour).92 Most of this cost can be attributed to priming and flushing the delivery circuit. The 

reduction in priming costs by denitrogenation of the delivery circuit could be achieved by breathing pure 
oxygen for 20 min pre-anaesthesia. However, this may not be acceptable for routine theatre activity, and 
so Rossaint et al.15 periodically flushed the circuit with a fresh oxygen–xenon mixture. If xenon 
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anaesthesia is to be employed routinely, an economic necessity may be complete denitrogenation pre-
anaesthesia.  

Dingley and colleagues have been at the forefront of developing xenon closed-circuit anaesthesia, and 
their experience with a long duration of anaesthesia in critical care suggested that inhalational sedation 
with xenon was economically viable.15 They have pointed out that xenon anaesthesia becomes more 
financially viable with longer duration of administration; after 4 h of administration xenon becomes 
comparable in cost to other anaesthetics.92 Thus xenon may yet prove to be the anaesthetic of choice in 

settings such as critical care or cardiac surgery, where prolonged administration of anaesthesia is 
necessary and fast emergence is beneficial.  

Measurement of xenon concentration is not accurate with traditional anaesthetic machines, and mass 
spectrometers and thermal conductivity sensors have been utilized to circumvent this problem. Mass 

spectrometers are the ‘gold standard’ but are costly, and thermal conductivity, as used by the Xenon 
Study Group,14 appears to be a more clinically acceptable method. Thermal conductivity is effective 
because xenon conducts heat better than other gases found within the anaesthetic circuit. Comparison of 
the accuracies of mass spectrometry and thermal conductivity suggests that there is no clinically 
significant difference between the two technologies during xenon anaesthesia.93  

Advances in recycling system technology will allow further improvement in the cost efficiency of xenon 
anaesthesia. Recycling systems which can reclaim xenon to a purity of >99% are available;90 however, 
for the efficient use of the recycling system, anaesthesia would have to be maintained with another agent 
while xenon was recovered, negating xenon’s beneficial emergence pharmacokinetics. Therefore 
development of recycling or refining technology may have to occur before the full clinical benefit of 
xenon anaesthesia can be discovered.  

 

  
The major volatile anaesthetics are based on chlorofluorocarbons 

(CFCs) and are known to deplete the ozone layer; in addition, nitrous 
oxide is 230 times more potent as a greenhouse gas than carbon 
dioxide, taking 120 years to break down. The amount of nitrous 
oxide released as an anaesthetic contributes 0.1% of the greenhouse 
effect.94 In contrast, xenon is a naturally occurring constituent of the 
environment and has no detrimental ecological effect. However, 
xenon’s ecological superiority must be balanced against the energy consumed in its recovery by the 

fractional distillation of liquid air.  

 

  
The attention that the Xenon Study Group has recently given to 
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xenon anaesthesia is deserved; we have further highlighted its 
potential clinical applications and exemplary safety record. Xenon 
has notable pharmacokinetic, cardiostable, neuroprotective and 
analgesic advantages over other anaesthetics, and further clinical 
trials are warranted to evaluate its effectiveness in the operating 
theatre and critical care unit. As delivery technology develops, xenon 
will become a more viable option in the anaesthetic armamentarium.  
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